domenica 26 ottobre 2014

Orientarsi con le stelle: perchè funziona?

Abbiamo visto diversi casi in cui si può determinare la situazione geografica attraverso l'osservazione degli astri. Basta avere un cronometro con il tempo universale UTC, un sestante per sapere l'angolo di altezza dell'astro sull'orizzonte e l'almanacco nautico e dai casi più semplici ai più complessi è stato possibile conoscere latitudine o longitudine o entrambi. Per la latitudine il compito non è stato difficile, la soluzione più semplice è attraverso il sole nel passaggio al meridiano: con la sola accortezza di fare più misure nell'intorno del mezzogiorno locale o, quando, utilizzando una bussola il sole è posizionato poco prima del transito per il sud geografico e poco dopo. La conoscenza della declinazione del sole nell'epoca dell'anno riportata nell'almanacco è sufficiente per conoscere la latitudine. Si può usare anche un astro che transita nella notte per il meridiano, conoscendo la declinazione dell'astro: variabile se è un pianeta o la luna o fissa se è una stella. Il problema in questo caso è che la determinazione va fatta durante il crepuscolo nautico in cui l'orizzonte è ancora visibile, non dopo quando le stelle spiccano di più nel cielo ma non si vede più l'orizzonte. Lo stesso problema c'è per la stella polare, che essendo una stella non di primaria grandezza è difficilmente visibile nel crepuscolo. Ci darebbe quasi direttamente la latitudine con la sola lettura dell'angolo sull'orizzonte, ma nel caso pratico è di difficile utilizzo per misure precise. Per la longitudine abbiamo visto che ci sono notevoli difficoltà e imprecisioni. L'ora dell'alba o del tramonto di sole e luna possono permetterci una misura abbastanza precisa, come anche il passaggio al meridiano, sempre con una lettura del cronometro della massima precisione. Il modo più efficace per avere la determinazione di latitudine e longitudine con buona precisione è attraverso il metodo delle intersezioni delle rette di altura Marq. Bastano 2 astri che formino un angolo intorno dai 45 gradi in su di azimut tra loro e la misura delle loro altezza può permetterci la correzione della stima del punto nave. Perchè funziona? Il concetto è legato al fatto che il luogo dei punti sul pianeta che vedono il primo astro con lo stesso angolo di altezza nello stesso istante sono su una circonferenza che giace sulla superficie terrestre e che può essere calcolata una volta note la declinazione e l'angolo orario rispetto a Greenwich dell'astro. L'equazione che consente questa determinazione si ottiene esplicitando per l'angolo al polo h l'equazione della trasformata di Eulero ottenendo:
Anche il secondo astro è visto da un luogo di punti che formano una circonferenza sulla Terra che ha il suo centro nella direzione di dove l'astro vede la Terra sotto di sè e vice versa. Le due circonferenze si intersecano in due punti o sono tangenti nei casi limite. Uno dei due punti è la nostra posizione sulla Terra.
Questo stesso metodo è utilizzato nel GPS per risalire alla posizione di un trasmettitore che è visto da due satelliti in posizione note. Nel GPS è utilizzato un terzo satellite per discriminare anche l'altezza dal suolo e, nella pratica, un quarto per risolvere l'incertezza sulla simultaneità dei segnali. Nella figura è rappresentato il caso che ho trattato nell'ultimo post, quello della Luna e Giove nella posizione vera, risultato finale dell'analisi del punto nave. Il punto più in basso è appunto quello caratterizzato dalla latitudine l_v = 11º 10' N L_v = 72º 00' E al largo dell'atollo di Peremul. Vediamo ora le circonferenze intersezione nel caso della situazioni stimata che portava a delle altezze stimate che differivano, anche se di poco, dalle altezza vere, quelle misurate con il sestante. Le circonferenze sono leggermente sfasate rispetto a quelle vere, intersecandosi nel punto nave stimato.
Il determinante dato dal delta delle altezze e dall'azimut calcolato consente di correggere la stima e tracciare le rette di altura Marq e dall'intersezione fra queste permettono di ottenere la posizione corretta. Le circonferenze sfasate ci permettono di capire come funziona il metodo delle interseizoni di Marq. Se l'altezza vera è maggiore dell'altezza stimata la circonferenza d'altura passa per punti nella direzione verso cui viene visto l'astro. Nel nostro caso la Luna è vista sotto l'azimut di 280º, localmente la circonferenza può essere confusa con un tratto rettilineo e questa è proprio la retta di altura. Quest'ultima la spostiamo dal punto stimato di tanti minuti di grado quanti differiscono la stima e la lettura dell'altezza. Per il secondo astro, Giove, l'altezza vera è inferiore alla stimata, questo corrisponde a una circonferenza di altura spostata in direzione opposta all'azimut sotto cui viene visto Giove. Anche qui il determinante consente di spostarsi lungo l'azimut e tracciare la retta che linearizza la circonferenza e permette di individuare l'intersezione con la prima retta d'altura. L'intersezione fornisce la posizione vera. Il metodo è abbastanza laborioso: necessita di una perfetta misura con il sestante, l'osservazione pressochè contemporanea di due astri in corrispondenza della quale leggere con la massima precisione il cronometro, infine la soluzione passa per un calcolo trigonometrico non semplice senza calcolatrici e una soluzione grafica. Tutto questo è molto difficile eseguirlo in navigazione senza errori. La determinazione della posizione è molto sensibile agli errori commessi nella sequenza delle operazioni precedentemente descritte. Vediamo in un caso pratico di quanto ci possiamo allontanare dalla posizione vera. Con un buon sestante un errore di circa 10 minuti di grado è ammissibile pensando alla difficoltà della misura da fare mentre l'imbarcazione beccheggia, l'orizzonte si fa via via più evanescente e l'astro non è così luminoso da evidenziarsi nettamente nel gioco di specchi e filtri del sestante. Si raccomanda comunque di fare più misure successive o simultanee da parte di più persone. L'ora può essere determinata con molta precisione ma tra la prima e la seconda osservazione si può commettere un errore di un minuto sul secondo astro. Se l'errore viene commesso solo per l'osservazione di Giove, le conseguenze sono abbastanza contenute. Infatti l'errore di un minuto nell'osservazione ha un impatto nella determinazione dell'angolo al polo che varia di circa 2 gradi. Ma il deteminante non cambia sostanzialmente. Quello che porta le maggiori conseguenze è l'angolo misurato: con una riduzione di 10' del suo valore, il delta_a si riduce anch'esso di 10', mentre un eccesso di 10' porta a una sovrastima del delta_a di 10'. Riportato sulla carta, le intersezioni delle rette di altura, essendo molto oblique tra loro risentono dell'errore amplificandolo. Nel caso di difetto di misura l'errore sulla situazione vera è di circa 23' a Nord-Est. Mentre l'eccesso porta a un errore di 27' a Sud-Ovest. Se viene commesso anche un errore di 10' sull'angolo di altezza della Luna, la combinazione dei possibili errori porta a un massimo di 40' a Nord della situazione vera in caso di eccesso per l'angolo della Luna e difetto per l'angolo di Giove e 60' a Sud della situazione vera in caso di difetto per l'angolo della Luna e eccesso per l'angolo di Giove. Sotto queste condizioni di errore non solo si poteva sbagliare il nome dell'atollo ma anche arrivare a dire che eravamo già a terra o al contrario ancora in mezzo all'oceano... per fortuna del nostro naufrago non era così! Nella pratica bisogna sempre tener presente che la tollerenza sulle misure in particolare degli angoli fa sì che si determini un parallelogrammo entro il quale ci si situa con un'approssimazione in miglia che va con l'errore in minuti dell'angolo di altezza, eventualmente amplificato tanto più quanto più l'azimut dei due astri si allontana dai 90º di intersezione. Si può eventualmente aggiungere un terzo astro osservato per poter cercare di eliminare gli errori sistematici. Con questa tecnica si genera un triangolo tra le rette di altura e la situazione vera viene ad essere il baricentro di questo triangolo. In conclusione le stelle sono davvero come dei fari nello spazio, ma come per quelli sulla costa, bisogna saperle riconoscere e interpretare per ottenere una posizione sufficientemente corretta...anche se un'occhiatina al GPS, nell'era digitale, toglie sempre qualsiasi dubbio!