giovedì 11 settembre 2014

Orientarsi con le stelle

Guardando il cielo, si può avere la percezione che le stelle stiano lì a marcare delle forme e dei confini quasi come i punti sparsi di un sistema cartesiano proiettato su uno schermo sferico. I punti sono effettivamente distribuiti in modo un po' caotico, invitando a trovare delle forme geometriche formate da rettangoli, triangoli e linee che hanno finito per rappresentare figure associate a delle forme che richiamano alla memoria animali o figure mitologiche. Sono però punti che tra loro ripresentano sempre le stesse posizioni relative, si alternano nelle varie stagioni dell'anno tornando sempre nelle stesse posizioni a seconda dell'ora e del giorno. Insomma le stelle sono adattissime per orientarsi e così faremo spiegando il metodo che si usa tuttora per la navigazione... in caso che il GPS non funzioni! Non solo gli uomini ma anche alcuni animali sono in grado di orientarsi con le stelle: è notario il caso di alcuni mammiferi, uccelli, pesci e anche insetti. Sicuramente il loro metodo è meno scientifico del nostro che si basa sulla trigonometria sferica ma ugualmente efficace. Il concetto di base è che su una superficie sferica ogni punto può essere individuato da due coordinate: due angoli che corrispondono a paralleli e meridiani rispetto a un riferimento, esattamente come si fa per i punti sulla Terra che vengono individuati attraverso latitudine e longitudine. Sulla sfera celeste, la latitudine corrisponde alla declinazione, mentre la longitudine all'ascensione retta. C'è un ulteriore sistema di coordinate che è permette individuare la stella dal punto di vista di un osservatore sulla Terra: altezza e azimut. L'altezza sull'orizzonte equivale al parallelo della sfera che ha lo zenit come vertice, mentre l'azimut corrisponde al meridiano a partire dal polo nord geografico. Una stella si puó dunque individuare passando dal sistema di coordinate celesti a quello locale e vice versa. Tutte le sfere si possono considerare concentriche e le differenti trasformazioni sono di rotazione sugli angoli di Eulero. Un osservatore su una imbarcazione in un punto dell'oceano può sapere dove si trova in termine di latitudine e longitudine se sa l'ora di Greenwich e l'altezza di un astro: il sole o la luna di giorno o luna, pianeti e stelle durante il crepuscolo nautico (il sole è sotto l'orizzonte di non più di 12 gradi), cioé quando l'orizzonte è ancora visibile e l'oscurità del cielo è già sufficiente per vedere le stelle di maggiore magnitudine. In queste condizioni, partendo da un punto di coordinate stimate e l'altezza misurata con il sestante è possibile risalire alla posizione corretta. Se le stelle osservate sono due o addirittura tre l'osservazione è tanto più precisa. Si procede nel seguente modo: innanzitutto va stimata la posizione nella quale si sta navigando sulla base dell'ultima rilevazione precisa, la direzione della rotta, la velocità e il tempo intercorso. Il vettore spostamento dato da velocità (nodi) x tempo (ore) ci dá le miglia di cui ci siamo separati dal punto nave precedente. Quindi a latitudine e longitudine della vecchia posizione va aggiunta il delta latitudine e il delta longitudine determinati dal vettore spostamento. Per quanto riguarda la latitudine il calcolo del delta è semplice perchè basta passare dalle miglia percorse per la componente dello spostamento in direzione nord-sud e divedere per 60 per ottenere i gradi di cui ci si è spostati. Per il delta longitudine bisogna considerare che uno spostamento in miglia lungo la direttrice est-ovest diviso 60 permette il calcolo dei gradi di cui ci si è spostati solo nel caso che la latitudine sia nulla, ovvero sull'equatore. Per tutte le altre latitudini, la larghezza dello "spicchio" rappresentato da due meridiani successivi si va riducendo con l'aumentare di questa, quindi lo stesso spostamento in miglia, diciamo 60, corrisponde a 1 grado all'equatore misura 2 gradi di longitudine alla latitudine di Oslo (circa 60 gradi). Questo è dovuto al fatto che la longitudine si riduce con il coseno della latitudine. O in altri termini: la circonferenza in un parallelo va con il raggio del parallelo che va decrescendo verso i poli con il coseno della latitudine. Per calcolare corretamente la nuova longitudine bisogna quindi dividere lo spostamento angolare determinato dallo spestamento in miglia dividendo per il coseno. A questo punto serve solo l'almanacco annuale delle effemeridi, un buon cronometro che ci sappia dare con molta precisione l'ora di Greenwich a qualsiasi longitudine siamo e un sestante per misurare l'angolo di cui l'astro si eleva dall'orizzonte. Il procedimento analitico lo spiegherò in un prossimo blog per specialisti della navigazione astronomica, ma è interessante notare che di fatto neanche la bussola è più indispensabile. Questo procedimento ha consentito di risolvere il problema della scarsa affidabilità delle letture del nord magnetico dal momento che nei vari punti della terra le deviazioni magnetiche sono differenti e oltretutto cambiano nel tempo. Il principio di calcolo è basato sul fatto che la longitudine stimata ci consente di sapere che angolo ci separa dal meridiano di riferimento di Greenwich, l'ora ci dice quale è l'angolo che dobbiamo sommare per sapere dove si posiziona l'azimut dell'astro rispetto al meridiano locale. Bisogna poi posizionare il riferimento delle ascensioni rette delle stelle che è la posizione dell'ariete, da qui è facile posizionare i meridiani di appartenenza delle stelle intorno a noi. Dal momento que ogni ora la sfera celeste si sposta di 15 gradi verso ovest, dovremo trasformare l'ora in gradi e posizionarci rispetto al meridiano locale che è a sua volta posizionato rispetto a Greenwich e anche la stella osservata va posizionata rispetto a Greenwich attraverso il riferimento dell'ariete. In pratica ogni stella di data declinazione e ascensione retta di notte fa un certo arco nel cielo, per cui in un istante e luogo, altezza e azimut devono coincidere con la trasformazione di Eulero della sua declinazione e ascensione retta. Se tutti i parametri sono corretti, incluso l'ora (con precisione al minuto) e l'altezza (con precisione del sestante al decimo di minuto possibilmente), se ci sono differenze queste dipendono solo dalla posizione stimata e quindi il calcolo consente una correzione. Prendendo a riferimento più stelle, 2 o 3, la posizione corretta può essere intersecata fino ad eliminare gli ulteriori errori di misura. Il passaggio essenziale è pensare che una stella può esser vista ad una altezza misurata con il sestante solo in un luogo di punti sulla terra che descrive un cerchio sulla superficie terrestre. Localmente questo cerchio si può confondere con un segmento perpendicolare alla direzione con cui l'astro è visto, questo segmento fa parte della retta di altura o di Marq. Due rette di altura individuano un punto in forma univoca e 3 individuano un triangolo al cui baricentro cade la posizione effettiva della nostra imbarcazione. Vedremo come questo calcolo viene effettuato con poche nozioni essenziali di geometria sferica.